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Tracer dynamics in a flow of driven vortices
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From numerical computations of the two-dimensional Navier-Stokes equations, we derive a low-
dimensional stream-function model that captures the essential properties of the dynamics of an array of driven
vortices in time-periodic regime. Using this analytical model, we study the Lagrangian dynamics of passive
tracers and show that it is essentially controlled by the existence of a chaotic saddle. We obtain its stable and
unstable manifolds, which in turn, yield an approximation of the chaotic saddle in terms of their intersections.
By introducing symbolic dynamics, the spatiotemporal properties of the flow, including an alternative approxi-
mation of the chaotic saddle, are described in terms of measures of compl82i663-651X99)03102-5

PACS numbdis): 05.45~a, 47.54+r, 47.52+j

[. INTRODUCTION increased. The resulting flow consists of a shear component
and a chain of corotating vortices both varying periodically
Lagrangian dynamics is an alternative method of describin time. A blob of passive tracers injected into the fluid in the
ing fluid dynamics in terms of Lagrangian coordinatesregion between the vortices and the shear flow acquires a
through the motion of scalar tracers determined by the fluidather irregular and chaotic dynamics. The separatrices of the
velocity field. In addition to its practical applications such asunperturbed flow then break off producing a separating layer
the spread of pollutants in the atmosphere and in the ocearis which the chaotic motion takes place. In this paper, we
[1], it also provides an alternative view on pattern formationargue that an invariant chaotic saddle and its stable and un-
in hydrodynamical systems. Since the publication of thestable manifolds, control the essential dynamics in this layer.
seminal paper by Ardi2], it has been realized that for simple  Chaotic saddles play a fundamental role in dynamical sys-
time periodic flows the pathlines of tracer particles can altems, especially in Hamiltonian systems, where the phase
ready have a very complicated, intertwined, and chaotizzolume is conserved. They are invariant sets under the dy-
shape, a phenomenon termed as Lagrangian turbulence. #amics and they strongly influence the qualitative behavior
comprehensive introduction on the topic of Lagrangian dy-of the whole solution structure. The presence of chaotic
namics and mixing theory can be found in the book by Ot-saddles in the Lagrangian dynamics of open hydrodynamical
tino [3], while an overview on recent research activities carflows has been shown by means of an analytical stream-
be found in Ref[4]. For incompressible fluids, especially for function model for the von Kanan vortex street by Reek
the two-dimensional case, there exists an exhaustive theogt al. [12]. They demonstrated that the chaotic saddle is re-
in terms of turnstyles and lobes leading to a deep understandponsible for the mixing property and chaotic behavior of the
ing of the mixing phenomengb]. particle advection. The evolution of two adjacent dyes re-
The objective of the present paper is to apply methods ofeals the fractal nature of their common boundary, and that
nonlinear dynamics to study the chaotic motion of passivés a signature for the existence of a chaotic saddle in the
tracers in the mixing region of a two-dimensional array ofdynamics. Moreover, this boundary exhibits such peculiar
vortices. The simple fluid model used here is motivated byfeatures as the Wada propefty3].
experiments performed in Refi66—9] and by numerical in- Our objective here is to reveal the existence of chaotic
vestigations on the two-dimensional Navier-Stokes equationsaddles in closed hydrodynamical flow of vortices, driven
[10,11. In those experiments, the transition to turbulence inperiodically in time. By contrast to open hydrodynamical
a linear chain of electrically driven vortices was studied. Byflows, as considered in Refgl2,13], asymptotic stationary
increasing the Reynolds number, which was controlled bystates of tracer trajectories does not apply here in the infinite
the strength of the applied current, variation in the spatiatime limit (t— *) and therefore scattering techniques can-
structure and temporal evolution of the flow was explored. not be used. We then apply the concept of symbolic dynam-
From numerical simulations of the two-dimensionalics and introduce special measures of compleii#~1§ in
Navier-Stokes equations, we find strong evidence that therder to expose the nature of the chaotic saddle and to dis-
essential dynamics, at least for moderate Reynolds numberglay its stable and unstable manifolds.
can be captured by a low-dimensional model. It consists of a In Sec. Il, we review briefly the bifurcations in a flow of
five-mode approximation and it gives the basic features ofiriven vortices as determined by the Navier-Stokes equa-
the first bifurcating solution branches. We prescribe thdions. From these results, a low-dimensional stream-function
stream-function in form of this five-mode approximation to model is derived that we use to study the Lagrangian dynam-
model the driven flow of vortices, and study the Lagrangianics. Then, in Sec. Ill, we elucidate the internal structure of
dynamics by applying an external time-periodic pertubationthe chaotic mixing layer by approximating the structure of
This model is used to emulate the dynamics of the vortexhe stable and unstable manifolds of a chaotic saddle. In Sec.
flow beyond the Hopf bifurcation as the Reynolds number idV, techniques from symbolic dynamics are introduced to
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FIG. 1. Streamlines ofa) eight driven counter-rotating vortice$ = 26.7) and(b) corotating vortices beyond the first pitchfork bifur-
cation (f =43.3). Lagrangian dynamics of passive tracers injecte@)ia steady state flow and fu) a time-periodically varying flow.

study the invariant dynamics of tracers. Finally, in Sec. V,related to the Reynolds number. For a weak forcing, corre-

conclusions are given. sponding to small Raynolds numbers, the array of eight
counter-rotating vortice¢see Fig. 18)] is the only time-
Il. STREAMLINE MODEL OE THE DRIVEN VORTICES asymptotic state. Increasing the strength of the forcing, this

_ o _ _ _ primary steady state loses its stability and a sequence of fur-
Our investigations are motivated by fluid experiments, segher bifurcations, ending up in chaos, is produced. A detailed
Refs.[6-9)], using electrolytic solutions. The Lorentz force, pifurcation analysis of the scenario has been described in

resulting from an applied current flowing through the elec-Refs [17,18. We review those bifurcations only thus far as
trolyte, drives a chain of counter-rotating vortices. This ex-

periment can be modeled by two-dimensional Navier-Stokes
equations with an external forcing in the form of

3.0

Ju
E+(v-V)v=V2v—Vp+f, (1)

V-v=0, 2

wherev is the fluid velocity fieldp is the thermal pressure,
andf represents the external force chosen to be

sink;x cosk,y
= (_ . ) 3
cosk x sink,y
By fixing the two constantk; andk, atk,=2 andk,=1, we 0.0 0.5 1.0 1-5 2.0 2.5 3.0
get an array of eight counter-rotating eddies in the region *
Q0 =[0,47]X[0,7]. The scalar parametdrstands for the FIG. 2. Stroboscopic map of particle dynamics in the region of

strength of the Lorentz force and it is in turn quantitatively the first vortex.
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FIG. 3. Surviving KAM tori in an enlargement of Fig. 2. FIG. 5. Approximation of the stable manifolds as in Fig. 4 by

it is necessary to derive the stream-line model that we use t§Versing the integration time.

study the Lagrangian dynamics.

At a critical Reynolds number the primary solution branch The coefficientsy; and, measure the strength of the shear
bifurcates in a secondary steady state consisting of four coflow componenty/; represents the original eight-vortex forc-
rotating vortices and a shear componjsege Fig. {b)]. They ing, and ¢, and 5 are responsible for the tilting of the
are separated by heteroclinic lines connecting the hyperboligddies[see Fig. 10)]. The concrete form of the time depen-
fixed points of the flow. A second pitchfork bifurcation dence, which we introduce in the stream-function model, is
changes the streamline portrait only slightly. The resultingmotivated by two features suggested by Navier-Stokes simu-
stationary branch is stable within only a very small intervallations. First, the spatial structure of the velocity field is only
of the forcing parameter, and eventually, it loses stability inslightly modulated by the time dependence, even in the cha-
a Hopf bifurcation. We have neglected this intermediateotic regime. Secondly, the time scales of these variations are
steady-state branch and set up a model which reflects tHgpically larger than the turnover time, that is, the time a
essence of the secondary steady states and the proceedpafsive tracer needs to move once around a vortex. The turn-
time-periodic dynamics of the velocity field after the Hopf over time is the characteristic time scale which we set to be
bifurcation. of the order of 1. We vary all the coefficients of the modes in

A detailed inspection of the secondary steady states givesd. (4) periodically as
evidence that five modes are sufficient to capture more than
99%. of the entire vortilcity.of the flow. Tr_\ese five modes di(1) = [ 1+ Ssin(wqt)], (5)
provide a good approximation of the spatial flow structure.

Thus, using the stream-function formulation, the flow can be

approximated by whered is a constant that measures the strength of the modu-
_ _ _ _ lation. Fixing the coefficientgs; by values that we get from
P(X,y) = hy SIN(Y) + b SIN(3Y) + ¢h3 SiN(2x) sin(y) the dominating modes in the Navier-Stokes simulations, Eq.

. . . 4) reproduces qualitatively the same streamlines as the
+ iha COI2X)SIN(2y) + Y5 SIN(2X)siN(3y). (4) ?\I;vierFfStokes flc()qw in Fig. (%/).

N RS RN
vl b b b

X 0.4 1.2

FIG. 4. Approximation of the unstable manifolds by the evolu-
tion of passive tracers that are injected as a blob at one of the FIG. 6. Intersection of stable and unstable manifolds in an en-
hyperbolic fixed points of the original steady state. largement of Figs. 4 and 5.
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Proceeding now with investigations of the Lagrangian dy- T TN T ,f;@'/) T
namics, we specify the flow by our analytical stream- . RS oy ]
function model Eq(4) and obtain a nonsteady dynamics of 1.7F H \\:qfi;.__ﬂ_,_ " __,-’,/‘f',?" =
the velocity field by varying the coefficient, periodically . : PRy et o ]
according to Eq(5) with & chosen to bes=0.2. Figure 1c) 7 /"‘,/f;fg_- . ]

IR . ]

shows the Lagrangian dynamics of tracers in the steady-stat g _ K ='-‘:-;‘§..4

/s i
flow governed by the velocity field of corotating vortices that .. : %, &{i’ff,, .o
is exhibited in Fig. 1). In practice, we inject a square dye v "'44,2" ’{,v, o
of 10000 tracers placed in the lower region of the left most : ETIIAL O g
vortex, where the heteroclinic line separates the vortex from ' F s AR E
the shear flow. The particles located inside the vortex : VR, N '
wrapup around its center and are trapped forever. The othe . /‘.vf, - S i
particles follow the shear flow, with slow speed in the neigh- 1.4 ’,/}f/ \9: ' =
borhood of the separatrices and with higher speed in the ‘ 0'4 — 0'6 ' 0'8 1'0‘ — 1'2 '

tonguelike blobs far from the vortices. We use periodic
boundary conditions in the horizontal direction and, as a re-
sult, the particles escaping at the right side of Fig,) teap- FIG. 7. The chaotic saddle is approximated by the intersecting
pear on the left side. Due to the steady-state character of thmints of the stable and unstable manifolds.

velocity field, the region of the other vortices are separated ) o ] o

and particles cannot enter them. However, when the flow More interesting is the irregular motion in the layer be-
gets a time dependence, the particle dynamics is much mofween the vortices and the shear flow. In this layer the par-
complicated. Figure (t) shows the spread of passive tracers,licles move nonperiodically, i.e., in the stroboscopic map no
initialized as previously, but now for a simulation having a régular structure such as a line or a loop is visible. Due to the
time-periodic flow. The hyperbolic fixed points of the steadyHamiltonian characteristic of the system, each particle start-
flow become hyperbolic fixed points in the Poincaeetion.  ing in the layer covers during its time evolution the complete
Their stable and unstable manifolds intersect heteroclinicallyayer. However, this layer is interspersed by infinitely many
forming heteroclinic tangles which are responsible for theSurviving KAM tori, i.e., the layer has holes and it is there-
chaotic advection near the vortices. Typically, a particle infore structured similar to a sponge. The particle motion in
the layer about a vortex moves in its neighborhood for arfhose holes is regular again but not as simple as inside the
indefinite period until it switches randomly to one of the Vortices or in the shear flow. Their quasiperiodic dynamics is
neighboring vortices. The rough shape of the chaotic layefaused by a higher frequency ratio. In a blow-up of the layer,
can be seen in Fig.(d) but the details of its structure are not & shown in Fig. 3, some of the surviving KAM tori are
discernible. In the following we analyze the fine structure ofdiscernible.

the layer in more detail and explain the mechanism produc- N the Poincaresection the layer resembles Swiss cheese
ing the irregu'ar motion of tracers in terms of chaotic with KAM tori as holes but without other internal structures.

saddles. However, the evolution of passive tracers injected into this
region produces patterns which look similar to fractal ob-

jects. The presence of a chaotic saddle, together with its
stable and unstable manifolds, is responsible for this intricate
Because of the incompressibility of the velocity field the Structure formation. A chaotic saddle is an invariant set at the

equations for the tracers, given in the streamline formulationntersection of the closure of its stable and unstable mani-

IIl. INTERNAL STRUCTURE OF THE CHAOTIC LAYER

by folds. The sprinkling of tracer particles in the chaotic saddle
region is a standard technique to visualize and approximate

9 p the unstable manifoldd9]. The tracers are placed as a small

X= v y=-—20 (6)  ball about one of the hyperbolic fixed points that exist in the

original steady state and where the saddle is located. Figure 4
. I . shows the nearly quasistationary distribution of tracers after
constitute a Hamiltonian system, generally depending on jonq integration time. The stable manifolds can be approxi-
time. We study its dynamics for a set of tracers in the timey4te py the same procedure by reversing the integration
periodic situation governed by Eqeb), (5). . . time as shown in Fig. 5. The composition of both figures in
__Stroboscopic maps offer a standard technique for visualy po,,.up region about the saddle is shown in Fig. 6. Even-
1Ing Fhe dynamics of perlod|cally plnven_ systems. Th_e tra'tually, Fig. 7 yields an approximation for the chaotic saddle
jectories are mapped on the Poincaetion by sampling etaining only those points of Fig. 6 which approximate the
them at multiple times of the driving period. The strobo-jyiersection of both manifolds. It should be mentioned that
scopic map for the Lagrangian dynamics of a set of passivg,e chaotic saddle as an invariant set consists of course of all

tracer particles, moving in the array of vortices, is presente he copies generated by the symmetry transformations of the
in Fig. 2. The periodic motion near the center of a vortex s,

represented by closed loops in the case of irrational ratio
between the forcing period and the orbit time, for rational

ratio they degenerate into a finite set of points. Similarly, the
regular motion in the shear part of the flow is also mirrored Techniques of symbolic dynamics are well-developed in
by smooth lines. the case of maps with a single critical poji#,15,2Q. For

IV. SYMBOLIC DYNAMICS
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FIG. 8. (Color) Shannon entropy of particle dynamics in the region of the left most vortex. The light colors indicate positive values of
the Shannon entropy suggesting the irregularity of the particle motion in the chaotic layer.
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FIG. 9. (Color) Shannon entropy in an enlargement of Fig. 8.
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FIG. 10. (Color) Shannon entropy of a system for which the velocity field is changing chaotically in time.
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FIG. 11. (Color) Partition 4, for | =14.
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FIG. 12. (Color) Partition A, for | =14.
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FIG. 13. (Colon Intersection of the stable and unstable manifold yields an approximation of the chaotic saddle.



1612 WITT, BRAUN, FEUDEL, GREBOGI, AND KURTHS PRE 59

this rather simple family, generating partitions are known toerties of these symbol sequences are discussed in the next
exist enabling an efficient coding of the dynamics in terms ofsubsections.

symbol sequences, and thus keeping the complete informa-

tion of the system in its symbolic dynamics. This property is A. Shannon entropy

expressed in the coincidence of the Shannon entropy of the
symbol sequence with the Kolmogorov-Sinai entropy of the

system and, consequently, with the sum of the Iargesﬂth order H, is based on the probability distribution of

Lyapunov exponents. ; n
The dynamics of low-dimensional systems can be anal-engthﬂ substringss” (words of lengthn) of the symbol

; g > p . sequence
lyzed by using symbolic dynamics if Poincamaps are in-

troduced[21,22. On the other hand, higher-dimensional

maps are rarely studied by means of symbolic dynamics, Ho=— X p(s")log, p(s"), (7)
since generating partitions are difficult to fifiti9]. Never- s"e A" p(s")>0

theless, the applications of this concept even to data from n .
complex natural systeme.g., earth magnetic fief@3], hu-  WhereA™ denotes the set of all possible lengtiwords.H,

man cardiac systenf®4], or cognitive complexity25]) or ~ Measures the average r_1umber of bits neeqled_ fo specify an
to nonlinear stochastic systerfiad] efficiently exhibits in- arbitrary word of lengtm in a sequenc&. Their differences
sights into the underlying dynamics.

The characterization of the symbol sequences is not re-
stricted to the estimate of Shannon entropy. A broad range of
so-called measures of complexift6] allows a more de- ho=Hj, 9
tailed characterization of the structure of these symbol se-
guences. Further there have been several attempts to find theantify the information needed to determine thet(1)th
grammatical rules of the symbolic dynami&y]. symbol of an arbitrary word of a given sequence if the first

For the model under study, we first need a transformatiorsymbols are known. Already the sequencgloft is mono-
from the state spacéx(t),y(t)) to a symbol space by dis- tonically decreasing. The Shannon entropy of the system is
cretizing space and time. The idea is to find a map of thehen defined as the limit df,,
trajectories into the set of symbol sequences such that regular
motions, as given by the tracers in the shear flow or by their h=lim h,. (10
long lasting circulation inside the vortices, have also regular n—oo
symbol sequences. In order to keep the computational re-
quirements as small as possible, we look for effective transkt describes the mean information contents per symbol. For
formations into symbol sequences with a minimal number othe h, the following holds.
different symbols. We attempt to work only with three sym- (1) For periodp sequences, ahl,, with n=p vanish.
bols denoted bys; e {—1,0,1}. Furthermore, we divide the (2) Due to Egs(7) and(8), all h, are equal td in case
domainQ =[0,47]X[0,#] in four cells by cuts along verti- of purely random symbol sequenc@ghite noise.
cal lines that are placed on the vortex centers. In other words, (3) For kth order Markov processes, the entropy differ-
a cell consists of two halves of neighboring vortices and theences reach the Shannon entropy of the systennfek:
separating region in between. At all times, when the traceh,=h for n>k. In the general case of more complicated
leaves a cell, i.e., when it intersects theoordinate of some sequences, thie, converge asymptotically to the limit
vortex center, a symbal is produced. We choose the rule to  The Shannon entropy is a measure of randomness in the
assig a 0 if thetracer reenters into the same cell that it hassense that it reaches its maximum in case of completely un-
left in the previous step. Obviously, this event accords to aorrelated symbol chains. Due to the passage to the limit in
continuing circulation about one of the vortices. If the tracerthe definition of Shannon entropy, its numerical computation
goes accross the entire cell from left to right or in the reverturns out to be difficult. To bypass this problem, we approxi-
sal direction we allot the symbol 1 er1, respectively, at the mate the Shannon entropy in the following by the Lempel-
instant when the tracer leaves the cell. This situation acZiv complexity [29—-31.
counts for the motion governed by the shear flow. Our objective in considering the Shannon entropy is to

Since an attractor does not exist here, one has to study tteharacterize the dynamical nature of the tracer motion. We
structure of the symbol sequences with relation to the initiakhttempt to explore the information encoded in the symbolic
conditionsxg. Initial conditions near the centers of the vor- sequences with the aim to distinguish spatial regions with
tices generate symbol sequences containing only zeros, i.alifferent Lagrangian dynamics. The Shannon entropy was
S§=(000...). If thetracer is starting in the shear part of the calculated for a set of tracers initially placed on a grid con-
flow, the symbol sequence is constant. By starting in thesisting of 100< 100 grid points. The results are presented in
lower shear flow, all the symbols are equal to 1 and byFigs. 8 and 9. Dark regions are related to vanishing Shannon
starting in the upper one, the corresponding symbol sequen@ntropy, lighter colors mean larger positive values. One
contains only— 1. For initial conditions in the layer, more finds, as expected, larger positive entropy for tracers starting
complicated symbol sequences appear; they contain the threa the layer, and vanishing small values for all other initial
basic symbols in an aperiodic sequence. Due to the ergodiconditions. In the blowup as shown in Fig. 9 even the regular
ity of the particles in the layer, all tracers starting there gen+egions of the surviving KAM tori in the layer are discern-
erate equally structured symbol sequences. The special projile. Furthermore, the Shannon entropies for tracers moving

The traditional quantity for characterizing a symbol se-
uence is the Shannon entrg8]. The Shannon entropy of

hn=Hny1—Hp, (8



PRE 59 TRACER DYNAMICS IN A FLOW OF DRIVEN VORTICES 1613

in the layer are approximately of the same size, a feature thatature of the motion in the layer, including stretching and
indicates the ergodic character of the Lagrangian dynamictlding properties of volume elements, this procedure leads
in this region. to longer and longer line elementsdw, . Finally, we obtain
These computations confirm the results obtained usin@ limit setd.A for | —co. By construction this se#.A forms
stroboscopic maps. But additionally, we attempt to apply thighe stable manifolds of the periodic orbits introduced above.
approach also to more general situations in which the techfhe same procedure can be repeated for the backward dy-
nique of stroboscopic maps fails. They are, for instance, theamics and it yields the unstable manifolds.
Lagrangian dynamics governed by a velocity field varying In Fig. 11 the partition4, for =14 is displayed using
quasiperiodically or chaotically in time. As an example, wedifferent colors, their boundaries are an approximation of the
show in Fig. 10 the Shannon entropy computed for a systerstable manifolds. Analogously, in Fig. 12, the partition
in which the coefficients); in Eq. (4) are chaotically modu- A, (I=14) and their boundaries represent the unstable
lated in time by thex coordinate of the Lorenz system. The manifolds. As discussed, the intersections of the stable and
rough shape of the layer is the same as in case of the periodifhstable manifolds forms the approximation of the chaotic
modulation(see Fig. 8 whereas its fine structure appears tosaddle, which basically controls the dynamics in the consid-
be more filigree. ered system. In Fig. 13, we give an indication of this set by
an overlap of4, and A, .
B. Chaotic saddles

In this subsection we return to the periodic time depen- V. CONCLUDING REMARKS
dence of the flow and we show that the introduction of sym-

bolic d i . | : hni . X In this paper, we have studied the chaotic motion of trac-
olic dynamics gives an alternative technique In approximaty, s in 5 chain of driven vortices introducing an analytical

ing the chaotic saddle. We proceed to approximate it in the,qe| which we have derived by numerical simulations of
foIIowing manner. .For a def?se _grid of initial cqnditions thethe orginal Navier-Stokes equations. Using this model we
short-ime symbolic dynamics is computed, i.e., for each,, e given evidence for the existence of a chaotic saddle
point on the grid the first symbo_ls are _o_btalneo_l. Further- controlling the Lagrangian dynamics in this closed Hamil-
more, the[9'7_7],>§[0’477], plane IS partitioned into ceIIs_ tonian system. In addition to presenting approximations of
which contain initial conditions leading to the same symbolicy,q gtaple and unstable manifolds of the chaotic saddle, we
dynamics with respect to the firstsymbols. We call this e introduced methods from symbolic dynamics to char-
partition 4, and its cellsA;, i=1,... n;. By construction,  gcerize the dynamics of tracers in a temporally varying flow.
each cellA, is related to a single word of lengththe volume |, 4ging so, we have recovered the structure of stable and
of this cell is equal to the probability of the word in the \hgiaple manifolds of the chaotic saddle and thus verifying
system under random initial condition. Due to positive i yiapility of our alternative method. These techniques of
Shannon entropy, the number of words is increasing exposympolic dynamics can also be extended to attack the prob-
nentially with the word length just as the number of cells. |5y, of particle dynamics in fluids with more general time

Since the symbol sequences near the centers of the vorticggendences such as, for instance, quasiperiodic, chaotic, or
and near the boundary are constant, new cells are only Crgiychastic properties.

ated on the chaotic layer.

The set’.4,, which contains the boundaries of all cells of
the partition.4,, consists of nonintersecting curves. The un-
stable periodic orbitgfixed points in the Poincare section F.F. thanks the University of Maryland for its hospitality
which are produced from the hyperbolic fixed points of theduring his stay. A. Witt was supported by Verein Deutscher
original steady state flow by the periodic modulation in time,Ingenieure(Grant No. 13N7000/7 and by the Max-Planck-
belong tod A, . The set). A, grows as the numbeérof the first  Gesellschaft. This work was also supported by the U.S. De-
relevant symbols determining the partitiod, increases, partment of EnergyMathematical, Information and Compu-
dA _1CdA, . Similarly, both the number of celld, and the tational Sciences Division, High Performance Computing
boundary seb.A; grows exponentially. Due to the irregular and Communication Program
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