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Tracer dynamics in a flow of driven vortices
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From numerical computations of the two-dimensional Navier-Stokes equations, we derive a low-
dimensional stream-function model that captures the essential properties of the dynamics of an array of driven
vortices in time-periodic regime. Using this analytical model, we study the Lagrangian dynamics of passive
tracers and show that it is essentially controlled by the existence of a chaotic saddle. We obtain its stable and
unstable manifolds, which in turn, yield an approximation of the chaotic saddle in terms of their intersections.
By introducing symbolic dynamics, the spatiotemporal properties of the flow, including an alternative approxi-
mation of the chaotic saddle, are described in terms of measures of complexity.@S1063-651X~99!03102-5#

PACS number~s!: 05.45.2a, 47.54.1r, 47.52.1j
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I. INTRODUCTION

Lagrangian dynamics is an alternative method of desc
ing fluid dynamics in terms of Lagrangian coordinat
through the motion of scalar tracers determined by the fl
velocity field. In addition to its practical applications such
the spread of pollutants in the atmosphere and in the oc
@1#, it also provides an alternative view on pattern formati
in hydrodynamical systems. Since the publication of
seminal paper by Aref@2#, it has been realized that for simp
time periodic flows the pathlines of tracer particles can
ready have a very complicated, intertwined, and cha
shape, a phenomenon termed as Lagrangian turbulenc
comprehensive introduction on the topic of Lagrangian
namics and mixing theory can be found in the book by O
tino @3#, while an overview on recent research activities c
be found in Ref.@4#. For incompressible fluids, especially fo
the two-dimensional case, there exists an exhaustive th
in terms of turnstyles and lobes leading to a deep underst
ing of the mixing phenomena@5#.

The objective of the present paper is to apply methods
nonlinear dynamics to study the chaotic motion of pass
tracers in the mixing region of a two-dimensional array
vortices. The simple fluid model used here is motivated
experiments performed in Refs.@6–9# and by numerical in-
vestigations on the two-dimensional Navier-Stokes equat
@10,11#. In those experiments, the transition to turbulence
a linear chain of electrically driven vortices was studied.
increasing the Reynolds number, which was controlled
the strength of the applied current, variation in the spa
structure and temporal evolution of the flow was explore

From numerical simulations of the two-dimension
Navier-Stokes equations, we find strong evidence that
essential dynamics, at least for moderate Reynolds numb
can be captured by a low-dimensional model. It consists
five-mode approximation and it gives the basic features
the first bifurcating solution branches. We prescribe
stream-function in form of this five-mode approximation
model the driven flow of vortices, and study the Lagrang
dynamics by applying an external time-periodic pertubati
This model is used to emulate the dynamics of the vor
flow beyond the Hopf bifurcation as the Reynolds numbe
PRE 591063-651X/99/59~2!/1605~10!/$15.00
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increased. The resulting flow consists of a shear compon
and a chain of corotating vortices both varying periodica
in time. A blob of passive tracers injected into the fluid in t
region between the vortices and the shear flow acquire
rather irregular and chaotic dynamics. The separatrices o
unperturbed flow then break off producing a separating la
in which the chaotic motion takes place. In this paper,
argue that an invariant chaotic saddle and its stable and
stable manifolds, control the essential dynamics in this lay

Chaotic saddles play a fundamental role in dynamical s
tems, especially in Hamiltonian systems, where the ph
volume is conserved. They are invariant sets under the
namics and they strongly influence the qualitative behav
of the whole solution structure. The presence of chao
saddles in the Lagrangian dynamics of open hydrodynam
flows has been shown by means of an analytical stre
function model for the von Ka´rmán vortex street by Pe´ntek
et al. @12#. They demonstrated that the chaotic saddle is
sponsible for the mixing property and chaotic behavior of
particle advection. The evolution of two adjacent dyes
veals the fractal nature of their common boundary, and t
is a signature for the existence of a chaotic saddle in
dynamics. Moreover, this boundary exhibits such pecu
features as the Wada property@13#.

Our objective here is to reveal the existence of chao
saddles in closed hydrodynamical flow of vortices, driv
periodically in time. By contrast to open hydrodynamic
flows, as considered in Refs.@12,13#, asymptotic stationary
states of tracer trajectories does not apply here in the infi
time limit (t→6`) and therefore scattering techniques ca
not be used. We then apply the concept of symbolic dyna
ics and introduce special measures of complexity@14–16# in
order to expose the nature of the chaotic saddle and to
play its stable and unstable manifolds.

In Sec. II, we review briefly the bifurcations in a flow o
driven vortices as determined by the Navier-Stokes eq
tions. From these results, a low-dimensional stream-func
model is derived that we use to study the Lagrangian dyn
ics. Then, in Sec. III, we elucidate the internal structure
the chaotic mixing layer by approximating the structure
the stable and unstable manifolds of a chaotic saddle. In
IV, techniques from symbolic dynamics are introduced
1605 ©1999 The American Physical Society
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FIG. 1. Streamlines of~a! eight driven counter-rotating vortices (f 526.7) and~b! corotating vortices beyond the first pitchfork bifu
cation (f 543.3). Lagrangian dynamics of passive tracers injected in~c! a steady state flow and in~d! a time-periodically varying flow.
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study the invariant dynamics of tracers. Finally, in Sec.
conclusions are given.

II. STREAMLINE MODEL OF THE DRIVEN VORTICES

Our investigations are motivated by fluid experiments,
Refs. @6–9#, using electrolytic solutions. The Lorentz forc
resulting from an applied current flowing through the ele
trolyte, drives a chain of counter-rotating vortices. This e
periment can be modeled by two-dimensional Navier-Sto
equations with an external forcing in the form of

]v
]t

1~v•“ !v5¹2v2“p1f, ~1!

“•v50, ~2!

wherev is the fluid velocity field,p is the thermal pressure
and f represents the external force chosen to be

f5 f S sink1x cosk2y

2cosk1x sink2yD . ~3!

By fixing the two constantsk1 andk2 atk152 andk251, we
get an array of eight counter-rotating eddies in the reg
V5@0,4p#3@0,p#. The scalar parameterf stands for the
strength of the Lorentz force and it is in turn quantitative
,

e

-
-
s

n

related to the Reynolds number. For a weak forcing, co
sponding to small Raynolds numbers, the array of ei
counter-rotating vortices@see Fig. 1~a!# is the only time-
asymptotic state. Increasing the strength of the forcing,
primary steady state loses its stability and a sequence of
ther bifurcations, ending up in chaos, is produced. A deta
bifurcation analysis of the scenario has been described
Refs.@17,18#. We review those bifurcations only thus far a

FIG. 2. Stroboscopic map of particle dynamics in the region
the first vortex.
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PRE 59 1607TRACER DYNAMICS IN A FLOW OF DRIVEN VORTICES
it is necessary to derive the stream-line model that we us
study the Lagrangian dynamics.

At a critical Reynolds number the primary solution bran
bifurcates in a secondary steady state consisting of four
rotating vortices and a shear component@see Fig. 1~b!#. They
are separated by heteroclinic lines connecting the hyperb
fixed points of the flow. A second pitchfork bifurcatio
changes the streamline portrait only slightly. The result
stationary branch is stable within only a very small interv
of the forcing parameter, and eventually, it loses stability
a Hopf bifurcation. We have neglected this intermedi
steady-state branch and set up a model which reflects
essence of the secondary steady states and the proce
time-periodic dynamics of the velocity field after the Ho
bifurcation.

A detailed inspection of the secondary steady states g
evidence that five modes are sufficient to capture more t
99% of the entire vorticity of the flow. These five mod
provide a good approximation of the spatial flow structu
Thus, using the stream-function formulation, the flow can
approximated by

c~x,y!5c1 sin~y!1c2 sin~3y!1c3 sin~2x!sin~y!

1c4 cos~2x!sin~2y!1c5 sin~2x!sin~3y!. ~4!

FIG. 3. Surviving KAM tori in an enlargement of Fig. 2.

FIG. 4. Approximation of the unstable manifolds by the evo
tion of passive tracers that are injected as a blob at one of
hyperbolic fixed points of the original steady state.
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The coefficientsc1 andc2 measure the strength of the she
flow component,c3 represents the original eight-vortex forc
ing, and c4 and c5 are responsible for the tilting of the
eddies@see Fig. 1~b!#. The concrete form of the time depen
dence, which we introduce in the stream-function model
motivated by two features suggested by Navier-Stokes si
lations. First, the spatial structure of the velocity field is on
slightly modulated by the time dependence, even in the c
otic regime. Secondly, the time scales of these variations
typically larger than the turnover time, that is, the time
passive tracer needs to move once around a vortex. The
over time is the characteristic time scale which we set to
of the order of 1. We vary all the coefficients of the modes
Eq. ~4! periodically as

c i~ t !5c i@11d sin~v1t !#, ~5!

whered is a constant that measures the strength of the mo
lation. Fixing the coefficientsc i by values that we get from
the dominating modes in the Navier-Stokes simulations,
~4! reproduces qualitatively the same streamlines as
Navier-Stokes flow in Fig. 1~b!.

e

FIG. 5. Approximation of the stable manifolds as in Fig. 4 b
reversing the integration time.

FIG. 6. Intersection of stable and unstable manifolds in an
largement of Figs. 4 and 5.
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1608 PRE 59WITT, BRAUN, FEUDEL, GREBOGI, AND KURTHS
Proceeding now with investigations of the Lagrangian d
namics, we specify the flow by our analytical strea
function model Eq.~4! and obtain a nonsteady dynamics
the velocity field by varying the coefficientsc i periodically
according to Eq.~5! with d chosen to bed50.2. Figure 1~c!
shows the Lagrangian dynamics of tracers in the steady-s
flow governed by the velocity field of corotating vortices th
is exhibited in Fig. 1~b!. In practice, we inject a square dy
of 10 000 tracers placed in the lower region of the left m
vortex, where the heteroclinic line separates the vortex fr
the shear flow. The particles located inside the vor
wrapup around its center and are trapped forever. The o
particles follow the shear flow, with slow speed in the neig
borhood of the separatrices and with higher speed in
tonguelike blobs far from the vortices. We use period
boundary conditions in the horizontal direction and, as a
sult, the particles escaping at the right side of Fig. 1~c! reap-
pear on the left side. Due to the steady-state character o
velocity field, the region of the other vortices are separa
and particles cannot enter them. However, when the fl
gets a time dependence, the particle dynamics is much m
complicated. Figure 1~d! shows the spread of passive trace
initialized as previously, but now for a simulation having
time-periodic flow. The hyperbolic fixed points of the stea
flow become hyperbolic fixed points in the Poincare´ section.
Their stable and unstable manifolds intersect heteroclinic
forming heteroclinic tangles which are responsible for
chaotic advection near the vortices. Typically, a particle
the layer about a vortex moves in its neighborhood for
indefinite period until it switches randomly to one of th
neighboring vortices. The rough shape of the chaotic la
can be seen in Fig. 1~d! but the details of its structure are n
discernible. In the following we analyze the fine structure
the layer in more detail and explain the mechanism prod
ing the irregular motion of tracers in terms of chao
saddles.

III. INTERNAL STRUCTURE OF THE CHAOTIC LAYER

Because of the incompressibility of the velocity field t
equations for the tracers, given in the streamline formulat
by

ẋ5
]c

]y
, ẏ52

]c

]x
, ~6!

constitute a Hamiltonian system, generally depending
time. We study its dynamics for a set of tracers in the tim
periodic situation governed by Eqs.~4!, ~5!.

Stroboscopic maps offer a standard technique for vis
izing the dynamics of periodically driven systems. The t
jectories are mapped on the Poincare´ section by sampling
them at multiple times of the driving period. The strob
scopic map for the Lagrangian dynamics of a set of pas
tracer particles, moving in the array of vortices, is presen
in Fig. 2. The periodic motion near the center of a vortex
represented by closed loops in the case of irrational r
between the forcing period and the orbit time, for ration
ratio they degenerate into a finite set of points. Similarly,
regular motion in the shear part of the flow is also mirror
by smooth lines.
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More interesting is the irregular motion in the layer b
tween the vortices and the shear flow. In this layer the p
ticles move nonperiodically, i.e., in the stroboscopic map
regular structure such as a line or a loop is visible. Due to
Hamiltonian characteristic of the system, each particle st
ing in the layer covers during its time evolution the comple
layer. However, this layer is interspersed by infinitely ma
surviving KAM tori, i.e., the layer has holes and it is ther
fore structured similar to a sponge. The particle motion
those holes is regular again but not as simple as inside
vortices or in the shear flow. Their quasiperiodic dynamics
caused by a higher frequency ratio. In a blow-up of the lay
as shown in Fig. 3, some of the surviving KAM tori ar
discernible.

In the Poincare´ section the layer resembles Swiss chee
with KAM tori as holes but without other internal structure
However, the evolution of passive tracers injected into t
region produces patterns which look similar to fractal o
jects. The presence of a chaotic saddle, together with
stable and unstable manifolds, is responsible for this intric
structure formation. A chaotic saddle is an invariant set at
intersection of the closure of its stable and unstable ma
folds. The sprinkling of tracer particles in the chaotic sad
region is a standard technique to visualize and approxim
the unstable manifolds@19#. The tracers are placed as a sm
ball about one of the hyperbolic fixed points that exist in t
original steady state and where the saddle is located. Figu
shows the nearly quasistationary distribution of tracers a
a long integration time. The stable manifolds can be appro
mated by the same procedure by reversing the integra
time as shown in Fig. 5. The composition of both figures
a blow-up region about the saddle is shown in Fig. 6. Ev
tually, Fig. 7 yields an approximation for the chaotic sadd
retaining only those points of Fig. 6 which approximate t
intersection of both manifolds. It should be mentioned th
the chaotic saddle as an invariant set consists of course o
the copies generated by the symmetry transformations of
flow.

IV. SYMBOLIC DYNAMICS

Techniques of symbolic dynamics are well-developed
the case of maps with a single critical point@14,15,20#. For

FIG. 7. The chaotic saddle is approximated by the intersec
points of the stable and unstable manifolds.
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PRE 59 1609TRACER DYNAMICS IN A FLOW OF DRIVEN VORTICES
FIG. 8. ~Color! Shannon entropy of particle dynamics in the region of the left most vortex. The light colors indicate positive va
the Shannon entropy suggesting the irregularity of the particle motion in the chaotic layer.

FIG. 9. ~Color! Shannon entropy in an enlargement of Fig. 8.



1610 PRE 59WITT, BRAUN, FEUDEL, GREBOGI, AND KURTHS
FIG. 10. ~Color! Shannon entropy of a system for which the velocity field is changing chaotically in time.

FIG. 11. ~Color! PartitionAl for l 514.



PRE 59 1611TRACER DYNAMICS IN A FLOW OF DRIVEN VORTICES
FIG. 12. ~Color! PartitionA l
2 for l 514.

FIG. 13. ~Color! Intersection of the stable and unstable manifold yields an approximation of the chaotic saddle.
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1612 PRE 59WITT, BRAUN, FEUDEL, GREBOGI, AND KURTHS
this rather simple family, generating partitions are known
exist enabling an efficient coding of the dynamics in terms
symbol sequences, and thus keeping the complete infor
tion of the system in its symbolic dynamics. This property
expressed in the coincidence of the Shannon entropy of
symbol sequence with the Kolmogorov-Sinai entropy of
system and, consequently, with the sum of the larg
Lyapunov exponents.

The dynamics of low-dimensional systems can be a
lyzed by using symbolic dynamics if Poincare´ maps are in-
troduced @21,22#. On the other hand, higher-dimension
maps are rarely studied by means of symbolic dynam
since generating partitions are difficult to find@19#. Never-
theless, the applications of this concept even to data f
complex natural systems~e.g., earth magnetic field@23#, hu-
man cardiac systems@24#, or cognitive complexity@25#! or
to nonlinear stochastic systems@26# efficiently exhibits in-
sights into the underlying dynamics.

The characterization of the symbol sequences is not
stricted to the estimate of Shannon entropy. A broad rang
so-called measures of complexity@16# allows a more de-
tailed characterization of the structure of these symbol
quences. Further there have been several attempts to fin
grammatical rules of the symbolic dynamics@27#.

For the model under study, we first need a transforma
from the state space„x(t),y(t)… to a symbol space by dis
cretizing space and time. The idea is to find a map of
trajectories into the set of symbol sequences such that reg
motions, as given by the tracers in the shear flow or by th
long lasting circulation inside the vortices, have also regu
symbol sequences. In order to keep the computational
quirements as small as possible, we look for effective tra
formations into symbol sequences with a minimal numbe
different symbols. We attempt to work only with three sym
bols denoted bysiP$21,0,1%. Furthermore, we divide the
domainV5@0,4p#3@0,p# in four cells by cuts along verti-
cal lines that are placed on the vortex centers. In other wo
a cell consists of two halves of neighboring vortices and
separating region in between. At all times, when the tra
leaves a cell, i.e., when it intersects thex coordinate of some
vortex center, a symbolsi is produced. We choose the rule
assign a 0 if thetracer reenters into the same cell that it h
left in the previous step. Obviously, this event accords t
continuing circulation about one of the vortices. If the trac
goes accross the entire cell from left to right or in the rev
sal direction we allot the symbol 1 or21, respectively, at the
instant when the tracer leaves the cell. This situation
counts for the motion governed by the shear flow.

Since an attractor does not exist here, one has to stud
structure of the symbol sequences with relation to the ini
conditionsx0 . Initial conditions near the centers of the vo
tices generate symbol sequences containing only zeros,
S5(000 . . . ). If thetracer is starting in the shear part of th
flow, the symbol sequence is constant. By starting in
lower shear flow, all the symbols are equal to 1 and
starting in the upper one, the corresponding symbol seque
contains only21. For initial conditions in the layer, mor
complicated symbol sequences appear; they contain the
basic symbols in an aperiodic sequence. Due to the ergo
ity of the particles in the layer, all tracers starting there g
erate equally structured symbol sequences. The special p
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erties of these symbol sequences are discussed in the
subsections.

A. Shannon entropy

The traditional quantity for characterizing a symbol s
quence is the Shannon entropy@28#. The Shannon entropy o
nth order Hn is based on the probability distribution o
length-n substringssn ~words of lengthn) of the symbol
sequence

Hn52 (
snPAn,p~sn!.0

p~sn!log2 p~sn!, ~7!

whereAn denotes the set of all possible length-n words.Hn
measures the average number of bits needed to specif
arbitrary word of lengthn in a sequenceS. Their differences

hn5Hn112Hn , ~8!

h05H1 , ~9!

quantify the information needed to determine the (n11)th
symbol of an arbitrary word of a given sequence if the firsn
symbols are known. Already the sequence of$hi% is mono-
tonically decreasing. The Shannon entropy of the system
then defined as the limit ofhn

h5 lim
n→`

hn . ~10!

It describes the mean information contents per symbol.
the hn the following holds.

~1! For period-p sequences, allhn with n>p vanish.
~2! Due to Eqs.~7! and~8!, all hn are equal toh0 in case

of purely random symbol sequences~white noise!.
~3! For kth order Markov processes, the entropy diffe

ences reach the Shannon entropy of the system forn5k:
hn5h for n.k. In the general case of more complicate
sequences, thehk converge asymptotically to the limith.

The Shannon entropy is a measure of randomness in
sense that it reaches its maximum in case of completely
correlated symbol chains. Due to the passage to the lim
the definition of Shannon entropy, its numerical computat
turns out to be difficult. To bypass this problem, we appro
mate the Shannon entropy in the following by the Lemp
Ziv complexity @29–31#.

Our objective in considering the Shannon entropy is
characterize the dynamical nature of the tracer motion.
attempt to explore the information encoded in the symbo
sequences with the aim to distinguish spatial regions w
different Lagrangian dynamics. The Shannon entropy w
calculated for a set of tracers initially placed on a grid co
sisting of 1003100 grid points. The results are presented
Figs. 8 and 9. Dark regions are related to vanishing Shan
entropy, lighter colors mean larger positive values. O
finds, as expected, larger positive entropy for tracers star
on the layer, and vanishing small values for all other init
conditions. In the blowup as shown in Fig. 9 even the regu
regions of the surviving KAM tori in the layer are discern
ible. Furthermore, the Shannon entropies for tracers mov
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PRE 59 1613TRACER DYNAMICS IN A FLOW OF DRIVEN VORTICES
in the layer are approximately of the same size, a feature
indicates the ergodic character of the Lagrangian dynam
in this region.

These computations confirm the results obtained us
stroboscopic maps. But additionally, we attempt to apply t
approach also to more general situations in which the te
nique of stroboscopic maps fails. They are, for instance,
Lagrangian dynamics governed by a velocity field varyi
quasiperiodically or chaotically in time. As an example, w
show in Fig. 10 the Shannon entropy computed for a sys
in which the coefficientsc i in Eq. ~4! are chaotically modu-
lated in time by thex coordinate of the Lorenz system. Th
rough shape of the layer is the same as in case of the per
modulation~see Fig. 8!, whereas its fine structure appears
be more filigree.

B. Chaotic saddles

In this subsection we return to the periodic time dep
dence of the flow and we show that the introduction of sy
bolic dynamics gives an alternative technique in approxim
ing the chaotic saddle. We proceed to approximate it in
following manner. For a dense grid of initial conditions th
short-time symbolic dynamics is computed, i.e., for ea
point on the grid the firstl symbols are obtained. Furthe
more, the @0,p#3@0,4p# plane is partitioned into cells
which contain initial conditions leading to the same symbo
dynamics with respect to the firstl symbols. We call this
partitionAl , and its cellsAi , i 51, . . . ,nl . By construction,
each cellAi is related to a single word of lengthl, the volume
of this cell is equal to the probability of the word in th
system under random initial condition. Due to positi
Shannon entropy, the number of words is increasing ex
nentially with the word lengthl just as the number of cells
Since the symbol sequences near the centers of the vor
and near the boundary are constant, new cells are only
ated on the chaotic layer.

The set]Al , which contains the boundaries of all cells
the partitionAl , consists of nonintersecting curves. The u
stable periodic orbits~fixed points in the Poincare section!,
which are produced from the hyperbolic fixed points of t
original steady state flow by the periodic modulation in tim
belong to]Al . The set]Al grows as the numberl of the first
relevant symbols determining the partitionAl increases,
]Al 21,]Al . Similarly, both the number of cellsAl and the
boundary set]Al grows exponentially. Due to the irregula
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nature of the motion in the layer, including stretching a
folding properties of volume elements, this procedure le
to longer and longer line elements in]Al . Finally, we obtain
a limit set]A for l→`. By construction this set]A forms
the stable manifolds of the periodic orbits introduced abo
The same procedure can be repeated for the backward
namics and it yields the unstable manifolds.

In Fig. 11 the partitionAl for l 514 is displayed using
different colors, their boundaries are an approximation of
stable manifolds. Analogously, in Fig. 12, the partitio
A l

2 ( l 514) and their boundaries represent the unsta
manifolds. As discussed, the intersections of the stable
unstable manifolds forms the approximation of the chao
saddle, which basically controls the dynamics in the cons
ered system. In Fig. 13, we give an indication of this set
an overlap ofAl andA l

2 .

V. CONCLUDING REMARKS

In this paper, we have studied the chaotic motion of tr
ers in a chain of driven vortices introducing an analytic
model which we have derived by numerical simulations
the orginal Navier-Stokes equations. Using this model
have given evidence for the existence of a chaotic sad
controlling the Lagrangian dynamics in this closed Ham
tonian system. In addition to presenting approximations
the stable and unstable manifolds of the chaotic saddle,
have introduced methods from symbolic dynamics to ch
acterize the dynamics of tracers in a temporally varying flo
In doing so, we have recovered the structure of stable
unstable manifolds of the chaotic saddle and thus verify
the viability of our alternative method. These techniques
symbolic dynamics can also be extended to attack the p
lem of particle dynamics in fluids with more general tim
dependences such as, for instance, quasiperiodic, chaot
stochastic properties.
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